CCS Technical Documentation RH-21 Series Transceivers

System Module

©Nokia Corporation

Contents

	Page No
Transceiver RH-21	
Introduction	
Operational Modes	
Engine Module	6
Environmental Specifications	6
Temperature Conditions	6
Baseband Module	7
UEM	
UEM introduction	7
Regulators	
RF Interface	
Charging Control	
Digital Interface	
Audio Codec	
UI Drivers	
AD Converters	
UPP8M	
Blocks	
Flash Memory	
Introduction	
User Interface Hardware	
LCD	
Introduction	
Interface	
Keyboard	
Introduction	
Power Key	
Lights	
Introduction	
Interfaces	
Technical Information	
Vibra	
Introduction	
Interfaces	
Audio Hardware	
Earpiece	
Introduction	
Microphone	
Introduction	
MIDI Speaker	
Introduction	
Battery	
Phone Battery	
Introduction	
Interface	
Battery Connector	14
Accessories Interface	

System connector	. 15
Introduction	. 15
Interface	. 15
Technical Information	. 16
Charger IF	16
Introduction	. 16
Interface	. 16
Test Interfaces	. 17
Production Test Pattern	17
Other Test Points	
EMC	
General	
BB Component and Control IO Line Protection	
Keyboard lines	
PWB	
LCD	
Microphone	
EAR Lines/MIDI	
System Connector Lines	
Battery Connector Lines	
M-bus F-bus	
Tranceiver Interfaces	
BB - RF Interface Connections	
BB - Kr Internate Connections	
UEM Block Signal Description	
UPP Block signals	
MEMORY Block Interfaces	
Audio Interfaces Baseband External Connections	
Test Pattern for Production Tests	
General Information About Testing	
Phone operating modes	
RF Module	
Requirements	
Temperature Conditions	
Main Technical Characteristics	
RF Frequency Plan	
DC Characteristics	
Power Distribution Diagram	
Regulators	
Receiver.	
AMPS/TDMA 800 MHz Front End	
TDMA 1900 MHz Front End	
Frequency Synthesizers	
Transmitter	
Antenna	45

Transceiver RH-21

Introduction

The RH-21 (Model 3520) transceiver is a single-band TDMA800 transceiver unit.

The transceiver consists of engine module (1cb) and assembly parts.

The transceiver has a full graphic display and the user interface is based on the Jack 3.2 UI with two soft keys.

An internal antenna is used, there is no connection to an external antenna.

The transceiver has a low leakage tolerant earpiece and an omnidirectional microphone, providing excellent audio quality.

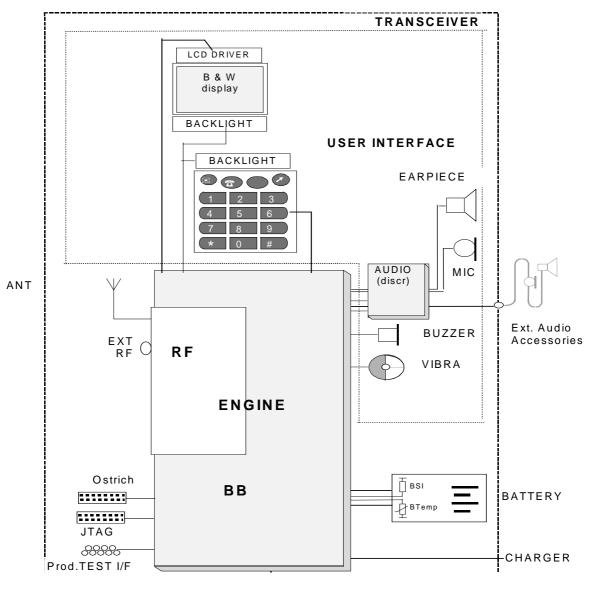


Figure 1: Interconnecting Diagram

Operational Modes

There are several different operational modes. Modes have different states controlled by the cellular SW. Some examples are: Idle State (on ACCH), Camping (on DCCH), Scanning, Conversation, No Service Power Save (NSPS) *previously OOR = Out of Range*.

In the power off mode, only the circuits needed for power up are supplied.

In the idle mode, circuits are powered down and only the sleep clock is running.

In the active mode, all the circuits are supplied with power although some parts might be in idle state part of the time.

The charge mode is effective in parallel with all previous modes. The charge mode itself consists of two different states (*i.e.*, the fast charge and the maintenance mode).

The local mode is used for alignment and testing.

Engine Module

Environmental Specifications

Normal and extreme voltages

Voltage range:

- nominal battery voltage: 3.6 V
- maximum battery voltage: 5.2 V
- minimum battery voltage: 3.1 V

Temperature Conditions

Temperature range:

- ambient temperature: -30...+ 60 °C
- PWB temperature: -30...+85 °C

Baseband Module

The core parts of 3560/3520 BB consists of two ASICs-UEM and UPP-and flash memory. The following sections describe these parts.

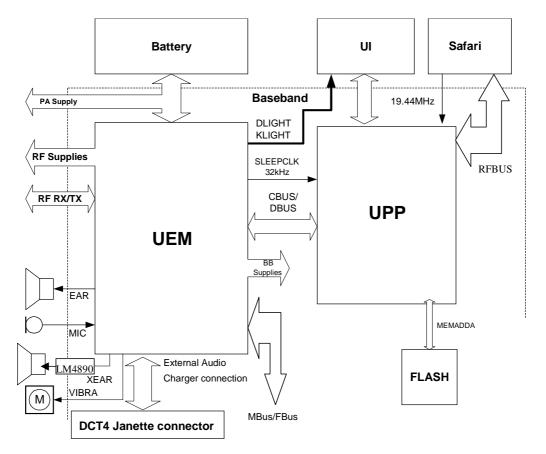


Figure 2: System Block Diagram (simple)

UEM

UEM introduction

The UEM is the Universal Energy Management IC for DCT4 digital handportable phones. In addition to energy management, it performs all the baseband mixed-signal functions.

Most UEM pins have 2kV ESD protection and those signals which are considered to be exposed more easily to ESD have 8kV protection inside UEM. Such signals are all audio signals, headset signals, BSI, Btemp, Fbus, and Mbus signals.

Regulators

The UEM has six regulators for BB power supplies and seven regulators for RF power supplies. The VR1 regulator has two outputs (VR1a and VR1b). In addition, there are two current generators (IPA1 and IPA2) for biasing purposes.

A bypass capacitor (1uF) is required for each regulator output to ensure stability.

Reference voltages for regulators require external 1uF capacitors. Vref25RF is reference voltage for VR2 regulator, Vref25BB is reference voltage for VANA, VFLASH1, VFLASH2, VR1 regulators, Vref278 is reference voltage for VR3, VR4, VR5, VR6, VR7 regulators, VrefRF01 is reference voltage for VIO, VCORE, VSIM regulators, and for RF.

ВВ	RF	Current
VANA: 2.78Vtyp 80mAmax	VR1a:4.75V 10mAmax VR1b:4.75V	IPA1: 0-5mA
Vflash1: 2.78Vtyp 70mAmax		IPA2: 0-5mA
Vflash2: 2.78Vtyp 40mAmax	VR2:2.78V 100mAmax	
VSim: 1.8/3.0V 25mAmax	VR3:2.78V 20mA	
VIO: 1.8Vtyp 150mAmax	VR4: 2.78V 50mAmax	
Vcore: 1.0-1.8V 200mAmax	VR5: 2.78V 50mAmax	
	VR6: 2.78V 50mAmax	
	VR7: 2.78V 45mAmax	

VANA regulator supplies internal and external analog circuitry of BB. It is disabled in sleep mode.

Vflash1 regulator supplies LCD, IR-module and digital parts of UEM and Safari asic. It is enabled during startup and goes to low Iq-mode in sleep mode.

Vflash2 regulator is not used.

VIO regulator supplies both external and internal logic circuitries. It's used by LCD, flash, and UPP. Regulator goes in to low Iq-mode in sleep mode.

VCORE regulator supplies DSP and Core part of UPP. Voltage is programmable and the start-up default is 1.5V. Regulator goes to low Iq-mode in sleep mode.

VSIM regulator is not used.

VR1 regulator uses two LDOs and a charge pump. Charge pump requires one external 1uF capacitor in Vpump pin and 220nF flying capacitor between pins CCP and CCN. VR1 regulator is used by Safari RF ASIC.

VR2 regulator is used to supply external RF parts, lower band up converter, TX power detector module, and Safari. In light load situations, VR2 regulator can be set to low lq-mode.

VR3 regulator supplies VCTCXO and Safari in RF. It's always enabled when UEM is active. When UEM is in sleep mode, VR3 is disabled.

VR4 regulator supplies RF parts having low noise requirements. In light load situations, VR4 regulator can be set to low Iq-mode.

VR5 regulator supplies lower band PA. In light load situations, VR5 regulator can be set to low Iq-mode.

VR6 regulator supplies higher band PA and TX amplifier. In light load situations, VR6 regulator can be set to low Iq-mode.

VR7 regulator supplies VCO and Safari. In light load situations, the VR7 regulator can be set to low Iq-mode.

IPA1 and IPA2 are programmable current generators. 27kW/1%/100ppm external resistor is used to improve the accuracy of output current. IPA1 is used by lower band PA and IPA2 is used by higher band PA.

RF Interface

The interface between the baseband and the RF section also is handled by UEM. It provides A/D and D/A conversion of the in-phase and quadrature receive and transmit signal paths and also A/D and D/A conversions of received and transmitted audio signals to and from the UI section. The UEM supplies the analog AFC signal to RF section according to the UPP DSP digital control. It also converts PA & VCTCXO temperature into real data for the DSP.

Charging Control

The CHACON block of UEM asics controls charging. Needed functions for charging controls are pwm-controlled battery charging switch, charger-monitoring circuitry, and battery voltage monitoring circuitry. In addition, external components are needed for EMC protection of the charger input to the baseband module. The DCT4 baseband is designed to support both DCT3 and DCT4 chargers from an electrical point of view.

Digital Interface

Data transmission between the UEM and the UPP is implemented using two serial connections, DBUS (programmable clock) for DSP and CBUS (1.0MHz GSM and 1.08MHz TDMA) for MCU. UEM is a dual voltage circuit, the digital parts are running from 1.8V and the analog parts are running from 2.78V. Vbat (3,6V) voltage regulator inputs also are used.

Audio Codec

The baseband supports two external microphone inputs and one external earphone output. The inputs can be taken from an internal microphone, from a headset microphone, or from an external microphone signal source through headset connector. The output for the internal earpiece is a dual-ended type output, and the differential output is capable of driving 4Vpp to the earpiece with a 60 dB minimum signal to total distortion ratio. Input and output signal source selection and gain control is performed inside the UEM Asic according to control messages from the UPP. The buzzer and an external vibra alert control signals are generated by the UEM with separate PWM outputs.

UI Drivers

There are discrete drivers for the MIDI speaker and keyboard LEDs. The drivers for vibra and display are inside UEM.

AD Converters

There is an 11-channel analog-to-digital converter in UEM. The AD converters are calibrated in the production line.

UPP8M

RH-21 uses UPP8M ASIC. The RAM size is 8M. The UPP ASIC is designed to operate in a DCT4 engine. The UPP processor architecture consists of both DSP and MCU processors.

Blocks

UPP is internally partitioned into two main parts:

The Processor and Memory System (*i.e.*, Processor cores, Mega-cells, internal memories, peripherals, and external memory interface). This is known as the Brain.

The Brain consists of the blocks: the DSP Subsystem (DSPSS), the MCU Subsystem (MCUSS), the emulation control (EMUCtl), the program/data RAM (PDRAM) and the Brain Peripherals-subsystem (BrainPer).

The NMP custom cellular logic functions. This is known as the Body.

The Body contains all interfaces and functions needed for interfacing other DCT4 baseband and RF parts. Body consists of following sub-blocks: MFI, SCU, CTSI, RxModem, AccIF, UIF, Coder, GPRSCip, BodyIF, SIMIF, PUP, and CDMA (Corona).

Flash Memory

Introduction

The RH-21 tranceivers use a 64-Mbit flash as its external memory. The VIO regulator is used as a power supply for normal in-system operation. An accelerated program/erase operation can be obtained by supplying Vpp of 12 volt to the flash device.

The device has two read modes: asynchronous and burst. The Burst read mode is utilized in RH-21, except for the start-up, when the asynchronous read mode is used for a short time.

In order to reduce the power consumpition on the bus, a Power Save function is introduced. This reduces the amount of switching on the external bus.

User Interface Hardware

LCD

Introduction

RH-21 uses a color GD51 96 x 65 full dot-matrix graphical display. The LCD module

includes LCD glass, LCD COG-driver, spring connector, and metal frame. The LCD module is included with the lightguide assembly module.

Interface

SW and the control signals are from the UPP asic. The VIO and Vflash1 regulators supply the LCD with power. The LCD has an internal voltage booster and a booster capacitor is required between Vout and GND.

Pin 3 (Vss) is the LCD driver's ground. LCD is controlled by UI SW and control signals.

Booster capacitor (C302 1 uF) is connected between booster pin (Vout) and ground. The capacitor stores boosting voltage.

Keyboard

Introduction

The RH-21 keyboard follows the Jack III style.

PWR key is located on top of phone.

Power Key

All keyboard signals come from UPP asic, except pwr key signal, which is connected directly to UEM. Pressing of pwr key is detected so that switch of pwr key connects PWONX is of UEM to GND and creates an interrupt.

Lights

Introduction

RH-21 has LEDs for lighting purposes: two LEDs for keyboard and two LEDs for display. LED type is TBSF (white).

Interfaces

Both the display and keyboard lights are controlled through a shared LED driver with a constant current charge-pump circuit. The driver circuit is controlled by the Dlight signal from UEM. With appropriate SW, the driver can be PWM controlled for dimming purpose.

Technical Information

LED locates in hole and terminals are soldered on the component side of the module PWB. The LEDs have a white plastic body around the diode, and this directs the emitted light better to the UI-side.

The current for the LCD lights is limited by the resistor between the ISET pin of the LED driver and ground. For the keyboard lights, there are resistors in parallel.

Vibra

Introduction

The vibra is located on D-cover and is connected by spring connectors on PWB. It is located in the left bottom side of the engine.

Interfaces

The vibra is controlled by the PWM signal VIBRA from the UEM. With this signal, it is possible to control both the frequency and pulse width of signal. Pulse width is used to control current when the battery voltage changes. Frequency control makes it possible to search for an optimum frequency to provide silent and efficient vibrating.

Audio Hardware

Earpiece

Introduction

The 13 mm speaker capsule that is used in DCT3 products is also used in RH-21.

The speaker is dynamic. It is very sensitive and capable of producing relatively high sound pressure at low frequencies.

Microphone

Introduction

The microphone is an electret microphone with an omnidirectional polar pattern. It consists of an electrically polarized membrane and a metal electrode which forms a capacitor. Air pressure changes (*i.e.*, sound) move the membrane, which cause voltage changes across the capacitor. Becauce the capacitance is typically 2 pF, a FET buffer is needed inside the microphone capsule for the signal generated by the capacitor. Because of the FET, the microphone requires a bias voltage.

MIDI Speaker

Introduction

The speaker being used to generate MIDI ring tones is a 13mm SALT speaker. The SALT speaker is mounted in the D-cover, kept in position by a double adhesive gasket that is mounted on the front of SALT. The useful frequency range is approximately 340 Hz to 8 KHz.

Battery

Phone Battery

Introduction

The battery for the 3560/3520 is the BLC-2 (Li-Ion 1000 mAh).

Interface

The battery block contains BTEMP and BSI resistors for temperature measurement and battery identification. The BSI fixed resistor value indicates the chemistry and default capacity of a battery. BTEMP-resistor measures the battery temperature. Temperature and capacity information is needed for charge control. These resistors are connected to BSI and BTEMP pins of the battery connector. Phone has pull-up resistors (R202) for these lines so that they can be read by A/D inputs in the phone (see figure below). There also are spark gaps in the BSI and BTEMP lines to prevent ESD.

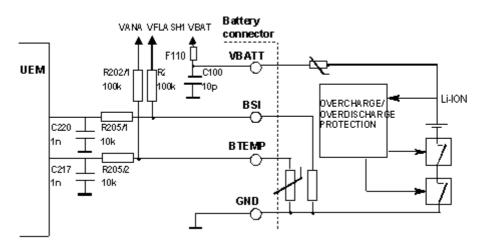


Figure 3: Battery Connections.

Batteries have a specific red line which indicates if the battery has been subjected to excess humidity. The batteries are delivered in a "protection" mode, which gives longer storage time. The voltage seen in the outer terminals is zero (or floating), and the battery is activated by connecting the charger. Battery has internal protection for overvoltage and overcurrent.

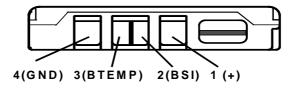


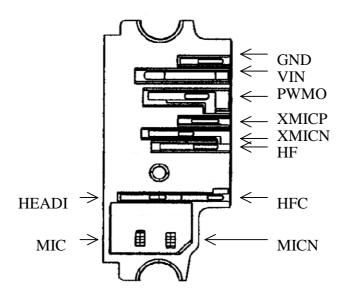
Figure 4: BLC-2 Battery contacts.

Battery Connector

RH-21 uses string type connector. This makes it easier to assemble the phone in production; and connection between battery and PWB is more reliable.

#	Signal name	Connected from - to	Batt I/O	Signal properties A/Dlevelsfreq./timing		Description / Notes
1	VBAT	VBAT	I/O	Vbat	3.1-5.2V	Battery voltage
2	BSI	UEM	Out	Ana		Battery size indi- cator
3	BTEMP	UEM	Out	Ana	40mA/ switch 400mA	Battery tempera- ture indicator
4	GND			Gnd		Ground

Accessories Interface


System connector

Introduction

RH-21 uses DCT4-accessories via DCT4 system connector.

Interface

The interface is supported by DCT4-compatible, fully differential 4-wire (XMICN, XMICP, XEARN, and XEARP) accessories.

An accessory is detected by the HeadInt- line, which is connected to the XMIC. When accessory is connected, it generates headint- interruption (UEMINT) to MCU. After that, hookInt line is used to determine which accessory is connected. This is done by the voltage divider, which consists of phone's internal pull-up and accessory specific pull-down. Voltage generated by this divider is then read by the ad- converter of UEM. The HookInt-interrupt is generated by the button in the headset or by the accessory external audio input.

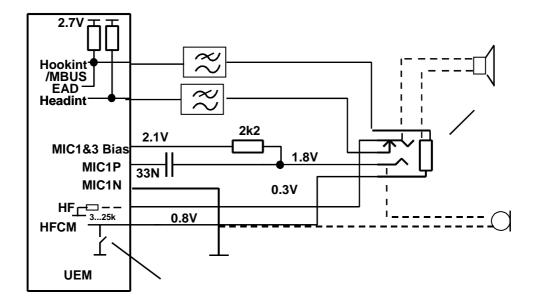


Figure 6: Accessory Detection / External Audio.

Technical Information

ESD protection is made by spark gaps, buried capacitor and inside UEM, which is protected ± 8 kV. RF and BB noise is prevented by inductors.

Charger IF

Introduction

The charger connection is implemented through the bottom connector. DCT-4 bottom connector supports charging with both plug chargers and desktop stand chargers.

There are three signals for charging. Charger gnd pin is used for both desktop and for plug chargers as well as charger voltage. PWM control line, which is needed for 3-wire chargers, is connected directly to gnd in module PWB so the engine doesn't provide any PWM control to chargers. Charging controlling is done inside UEM by switching UEM internal charger switch on/off.

Interface

The fuse F100 protects the phone from currents that are too high (for example, when broken or pirate chargers are used). L100 protects engine from RF noise, which may occur in charging cable. V100 also protects the UEM asic from reverse polarity charging voltage and from excessive charging voltage. C105 is also used for ESD and EMC protection. Spark gaps are used for ESD protection right after the charger plug.

Test Interfaces

Production Test Pattern

Interface for RH-21 production testing is 5-pin pad layout in BB area (see figure below). Production tester connects to these pads by using spring connectors. Interface includes MBUS, FBUSRX, FBUSTX, VPP and GND signals. Same pads also are used for AS test equipments such as module jig and service cable.

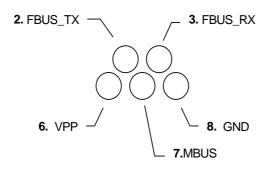


Figure 7: Top View of Production Test Pattern

Other Test Points

Because BB asics and flash memory are CSP components, the access to BB signals is very poor. This makes measuring of most of the BB signals impossible. In order to debug BB at least on some level, the most important signals can be accessed from 0.6 mm test points.

EMC

General

There are many ways to protect the phone from EMC. One form of protecting BB against EMC is a shield to cover main components of BB – components such as UEM, UPP and Flash. UEM has internal protection against \pm 8kV ESD pulse. BB shield has a removable lid so repairing of BB is possible. Shield also improves thermal dissipation by spreading the heat more widely.

BB Component and Control IO Line Protection

Keyboard lines

The keyboard PWB layout consists of a grounded outer ring and either a "trefoil pattern" grid (matrix) or an inner pad. This construction makes the keys immune for ESD, as the keydome will have a low ohmic contact with the PWB ground.

The keyboard is controlled entirely by the UPP. The rows and columns are ESD protected by diodes and spark gaps.

PWB

The PWB has been designed to shield all lines susceptible for radiation. Sensitive PWB

Confidential

tracks have been drawn with respect to shielding by having ground plane over tracks, and ground close to the tracks at the same layer.

All edges are grounded from both sides of PWB and solder mask is opened from these areas. Target is that any ESD pulse faces ground area when entering the phone; for example, between mechanics covers. All holes in PWB are grounded and plated through holes.

LCD

ESD protection for LCD is implemented by connecting metal frame of LCD in to gnd. Connection is only on one side, at the top of the LCD.

Microphone

Microphone signals are input lines and therefore very sensitive to radiated fields. Immunity for radiated fields is done to obtain a low impedance path and with respect to a common noise point of view in the signal path. This is applied for both internal and external microphone lines. Microphone is an unsymmetrical circuit, which makes it well protected against EMC.

EAR Lines/MIDI

Internal EAR lines are EMC/ESD protected by radiated fields from the earpiece by the low impedance signal path in the PWB.

The same PWB outline has been implemented for the SALT speaker. Low ohm coils are used in series with the speaker for immunity against incoming fields from the speaker.

	System Connector signals that have EMC protection												
Protection type	VIN	XMIXP	XMICN	XEARP	XEARN	HEADINT	MICP						
ferrite bead (600 /199MHz)		X	Х	Х	Х		Х						
ferrite bead (420 /100MHz)	Х												
spark gaps		Х	Х	Х	Х	Х	Х						
PWB capacitors		Х	Х	Х	Х	Х	Х						
RC-circuit			Х	Х	Х	Х	Х						
capacitor to ground	Х	X	Х	Х	X								

System Connector Lines

HF and HFCM lines have spark gaps, and a ferrite bead RF filter (450 W/100 MHz).

Headint and Hookint have spark gaps as well as an RC-circuit.

Charger + is protected with a ferrite bead (42 W/100 MHz) and capacitor to ground (1 n).

Charger - is protected with a ferrite bead (42 W/100 MHz).

Battery Connector Lines

BSI and BTEMP lines are protected with spark gaps and RC-circuit where resistors are size 0402.

M-bus F-bus

The FBus and MBus lines are protected with spark gaps and resistors.

Tranceiver Interfaces

BB - RF Interface Connections

All the signal descriptions and properties in the following tables are valid only for active signals.

RIP	Signal name	Connec from -		BB	I/O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes		
RFIC	CNTRL(2:0)			RF IC	RF IC Control Bus from UPP to RF IC (SAFARI)					
0	RFBUSCLK	UPP	RFIC	In	Dig	0/1.8V (0: <0.4V	9.72 MHz	RF Control serial bus bit clock		
1	RFBUSDA	UPP/ RFIC	RFIC UPP	I/O	Dig	1:>1.4V		Bi-directional RF Control serial bus data.		
2	RFBUSEN1X	UPP	RFIC	In	Dig			RFIC Chip Set X		
PUL ((2:0)			Powe	Power Up Reset from UEM to RF IC (SAFARI)					
0	PURX	UEM	RFIC	Out	Dig	0/1.8V	10us	Power Up Reset for RFIC		
								SLCLK & SLEEPX not used in RF		
GEN	(28.0)			GEN(General I/= Bus connected to RF, see also separate collective GEN(28.0) table Control lines from UPP GENIOs to RF					
5	TXP1	RFIC, Lo- band mixer	UPP	Out	Dig	0/1.8V	10 us	Low Band Tx enabled		
6	TXP2	RFIC	UPP	Out	Dig	0/1.8V		High band Tx enabled		
RFCL	RFCLK (not BUS -> no rip #)				System Clock from RF to BB, original source VCTCXO, buffered (and frequency shifted, WAM only) in RF IC (SAFARI)					

RH-21 System Module

RIP	Signal name	Connec from -		BB	I/O	Signal Prope A/D Levels-F Timing resol	Freq./	Description / Notes
	RFCLK	VCTCX 0 -> RFIC	UPP	In	AN A	800mVpp typ (FET probed)	19.44 MHz	System Clk from RF to BB
						Bias DC blocked at UPP input		
	RFCIk GND	RF	UPP	In	Ana	0		System Clock slicer Ref GND, not separated from pwb GND layer
SLOV	VAD(6:0)			Slow	Speed A	ADC Lines from	n RF block	
5	PDMID	RF Power detec- tion mod- ule	UEM	In	Ana	0/2.7V dig	0/VR2	Power detection module identification to slow ADC (ch 5, previous VCTCXO Temp) signal to UEM
6	PATEMP	RF Power detec- tion mod- ule	UEM	In	Ana	0.1-2.7V	-	Tx PA Temperature to UEM, NTC in Power Detection Module
RFCC)NV(9:0)		I	RF-B volta		< I&Q, Rx I&Q and reference		
0	RXIP	RFIC	UEM In	In	Ana			Differential positive/nega-
1	RXIN					max. diff. 0.5Vpp typ		tive in-phase Rx Signal
2	RXQP					bias 1.30V		Diff. positive/negative quad-
3	RXQN							rature phase Rx Signal
4	TXIP	UEM	RFIC	Out	Ana	2.2Vpp max. diff.		Differential positive/nega- tive in-phase Tx Signal
5	TXIN					0.6Vpp typ		
6	ТХQР	_				bias 1.30V		Diff. positive/negative quad- rature phase Tx Signal
7	TXQN							rature phase in signal
9	VREFRF01	UEM	RFIC	Out	Vref	1.35 V		RF IC Reference voltage from UEM
RFAL	RFAUXCON(2:9)			RF-B	B Analo	g Control Sign	als to/fro	m UEM
1	TXPWRDET	TXP Det.	UEM	In	Ana	0.1-2.4V	50 us	Tx PWR Detector Signal to UEM
2	AFC	UEM	VCTCX 0	Out	Ana	0.1-2.4V		Automatic Frequency Con- trol for VCTCXO

RIP	Signal name	Connec from -		BB	I/O	Signal Prope A/D Levels-I Timing resol	Freq./	Description / Notes			
VRF	Globals instead	of Bus			Regulated RF Supply Voltages from UEM to RF. Current values are of the regulator specifications, not the measured values of RF						
	VR1 A	UEM	RFIC	Out	Vre g	4.75 V +- 3%	10mA max.	UEM, charge pump + linear regulator output. Supply for UHF synth phase det			
	VR1 B	UEM	RFIC	Out	Vre g	4.75 V +- 3%	10mA max.	UEM, charge pump + linear regulator output. Supply for Tx VHF VCO.			
	VR2	UEM	RFDis cr./ RFIC	Out	Vre g	2.78 V +- 3%	100 mA max.	UEM linear regulator. Supply voltage for Tx IQ filter and IQ to Tx IF mixer.			
	VR3	UEM	VCTCX 0	Out	Vre g	2.78 V +- 3%	20mA max.	UEM linear regulator. Power supply to VCTCXO + RFCLK Buffer in RF IC.			
	VR4	UEM	RFIC	Out	Vre g	2.78 V +- 3%	50mA max.	UEM linear regulator. Power supply for LNA/RFIC Rx chain.			
	VR5	UEM	RFIC	Out	Vre g	2.78 V +- 3%	50mA max.	UEM linear regulator. Power supply for RF low band PA driver section.			
	VR6	UEM	RFIC	Out	Vre g	2.78 V +- 3%	50mA max.	UEM linear regulator. Power supply for RF high band PA driver section.			
	VR7	UEM	RFIC, UHF VCO	Out	Vre g	2.78 V +- 3%	45mA	UEM linear regulator. Power supply for RF Synthes.			
	IPA1	UEM	RF PA	Out	lout	0-5 mA		Settable Bias current for RF PA L-Band			
	IPA2	UEM	RF PA	Out	lout	0-5 mA		Settable Bias current for RF PA H-Band			
	VFLASH1	UEM	RFIC	Out	lout	2.78V	12mA	UEM linear regulator com- mon for BB. RFIC digital parts and F to BB digl. IF.			
VBAT	T, Global										
	VBATTRF	Batt Conn	RFPA	Out	Vba tt	35V	01A 2A peak	Raw Vbatt for RF PA			

BB Internal Connections

UEM Block Signal Description

RIP	Signal name	Connec from -		UEM	I/O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes	
RFCC)NVDA(5:0)*					nterface betwee (bit stream sign		JEM. RF converter CLK. Rx and	
0	RFCONVCLK	UPP	UEM	In	Dig	0/1.8V	4.86 MHz/ Digi 3.24 MHz / Ana	RF Converter Clock	
1	RXID	UEM	UPP	Out				(PDM) RxI Data	
2	RXQD							(PDM) RxQ Data	
3	TXID	UPP	UEM	In				(PDM) Txl Data	
4	TXQD	1						(PDM) TxQ Data	
5	AUXDA	UPP	UEM	In				Auxiliary DAC Data	
RFCC	ONVCTRL(2:0)*					interface betwe tional serial Cor) and UEM. RF converter UEM BUS".	
0	DBUSCLK	UPP	UEM	In	Dig	0/1.8V	9.72MHz	Clock for Fast Control to UEM	
1	DBUSDA			In/ Out				Fast Control Data to/from UEM	
2	DBUSENX			In				Fast Control Data Load / Enable to UEM	
AUD	UEMCTRL(3.0)*			1.8V digital interface between UPP (MCU) and UEM. Bidirectional Con- trol Bus "CBUS"					
0	UEMINT	UEM	UPP	Out	Dig	0/1.8V		UEM Interrupt	
1	CBUSCLK	UPP	UEM	In			1.08MHz	Clock for control/Audio Convertors in UEM	
2	CBUSDA			In/ Out			1.08Mbit /s	Control data	
3	CBUSENX	1		In				Control Data Load Signal	
AUD	IODATA(1:0)*					audio interface I by CBUSCLK	between UPI	P and UEM audio codec. PDM	
0	EARDATA	UPP	UEM	In	Dig	0/1.8V	1.08Mbit /s	PDM Data for Downlink Audio, clocked by CBUSCLK	
1	MICDATA	UEM	UPP	Out				PDM Data forUplink Audio, clocked bu CBUSCLK	

RIP	Signal name	Connec from -		UEM	I/O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes		
PUSL	PUSL(2:0)*			Powe	Power-Up & Sleep Control lines					
0	PURX	UEM	UPP RFIC	Out	Dig	0/1.8V		Power Up Reset, 0 at reset		
1	SLEEPX	UPP	UEM	In				Power Save Functions, 0 at sleep		
2	SLEEPCLK	UEM	UPP	Out			32 KHz	32 KHz Sleep Clock		
IACC	IACCDIF(5:0)*			BB Internal 1.8V Digital Accessory Buses between UPP and 2.7V level shifter UEM						
0	IRTX	UPP	UEM	Out	Dig	0/1.8V	1.152	Infrared Transmit		
1	IRRX	UEM	UPP	In			Mbit/s max	Infrared Receive		
2	MBUSTX	UPP	UEM	In	Dig	0/1.8V	9k6 b/s	MBUS Transmit		
3	MBUSRX	UEM	UPP	Out			9k6 b/s < 7 Mb/s	MBUS Receive / FDL Clk		
4	FBUSTXI	UPP	UEM	In	Dig	0/1.8 V	<115kb/s	FBUS Transmit / FDL Tx		
5	FBUSRXI	UEM	UPP	Out			<1Mb/s <115kb/s <7Mb/s	FBUS Receive / FDL Rx		

RIP	Signal name	Connec from –		UEM I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes	
SLOV	SLOWAD(6:0)*			SLow	SLow Speed ADC Lines, UEM external				
0	BSI	BAT-	UEM In	In	In Ana	a 0-2.7V		Battery Size Indicator/FDL	
1	BTEMP	TERY						init Battery Temperature	
5	PDMid	RF PDMo d	UEM	In	Ana	0-2.7V		Power detection module identification to slow ADC (ch, previous VCTCXO Temp)	
6	PATEMP	RF, PDMo d NTC						signal to UEM.	
RFCC)NV(9:0)*			RF -	BB Anal	og Signals: Tx I8	etQ, Rx letQ a	and ref	
0	RXIP	RFIC	UEM	In	In Ana	1.4Vpp max		Differential positive/nega-	
1	RXIN					diff. 0.5Vpp typ		tive in-phase Rx Signal	
2	RXQP					bias 1.30V		Diff. positive/negative quad-	
3	RXQN							rature phase Rx Signal	

RIP	Signal name		Connected from - to		UEM I/O Signal Properties A/D Levels-Freq./ Timing resolution		req./	Description / Notes
4	TXIP	UEM	RFIC	Out	Ana	2.2Vpp max diff.		Differential positive/nega- tive in-phase Tx Signal
5	TXIN					0.6VppTyp		tive in-phase ix signal
6 7	TXQP TXQN	-				Bias 1.30V		Differential positive/nega- tive quadrature phase Tx Signal
9	VREFRF01	UEM	RFIC	Out	Vref	1.35V		RF IC Reference voltage from UEM
HP IN	NTERNAL AUDIC)		1		I		
AUDI	0(4:0)		HP Inte	rnal and	alog ea	r & microphone	IF between	UEM and Mic/Ear circuitry
0	EARP EARN	UEM	Ear- piece	Out	Ana	1.25V	Audio	Differential signal to HP internal Earpiece. Load resistance 32 ohm.
2	MIC1N	Mic	UEM	In	A no	100m\/nn	Audio	
2	MIC1N MIC1P	IVIIC	UEIVI	In	Ana	100mVpp max diff.	Audio	Differential signal from HP internal MIC, 2mV nominal
4	MICB1	Mic	UEM	Out	V bias	2.1V typ./ <600 uA	DC Bias	Bias voltage for internal MIC
EXTE	I RNAL AUDIO IN	ITERFACE						
XAU	010(9:0)*		Externa	l Audio	IF betv	veen UEM and X	(-audio circi	uitry
0	HEADINT	SysCo n/ HSet	UEM	In	Dig	0/2.7V		Input for Headset Connector HeadInt Switch
1	HF	UEM	SysCo n/	Out	Ana	1.0Vpp bias 0.8V	Audio	External Earpiece Audio Sig- nal
2	HFCM		HSet		Ana	0.8 Vdc	-	Reference output for DC coupled external Earpiece
3	MICB2	UEM	SysCo n/ HSet	Out	V bias	2.1V typ/ 600 uA		Bias voltage for external MIC
4	MIC2P	SysCo	UEM	In	Ana	200mVpp	Audio	Differential signal from
5	MIC2N	n/ Head- set				max diff		external MIC
6	HOOKINT	Sys Con	UEM	In	Ana /Dig	02.7V	DC	HS Button interrupt, Exter- nal Audio Accessory Detect (EAD)
CHAR	rger interfac	:Е	1	<u>I</u>	1	1	1	1
CHA	RGER lines, no t	ous*						

RIP	Signal name	Connec from -		UEM I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes			
	VCHARGIN	Charg er	UEM	In	Vch r	< 16 V <1.2 V	DC	Vch from Charger Connec- tor, max. 20 V			
	GND				GN D			GND from/to Charger con- nector			
PWR	ONX *	·	Power C)n Sign	al, see	also the UI/keyb	oard				
	PWRONX	UI	UEM	In	Dig	0/Vbatt		Power button			
	GND				GN D			GND from/to Charger con- nector			
RFAL	JXCONV(2:0)		RF-BB auxiliary analog signals								
0											
1	TXPWRDET	TXPow . Det. Mod.	UEM	In	Ana	0.1-2.7V		Tx PWR Detector Output to UEM			
2	AFC	UEM	VCTCX 0	Out	Ana	0.1-2.4V	11bits	AFC control voltage to VCTCXO, default about 1.3V			
IRIF,	no bus no rips		UEM 2.7	7V sign	als to I	R Module	1				
	IRLEDC	UEM	IR	Out	Dig	0/2.7V	9k6 - 1Mbit/s	IR Tx signal to IR Module			
	IRRXN	IR	UEM	In	Dig	0/2.7V	9k6 - 1Mbit/s	IR Receiver signal from IR Module			
UIDF	V lines, no bus		UEM drivers: sinking outputs to Buzzer, Vibra, KLED, DLED								
	BUZZO	UEM	Buzze r	Out	Dig	350mA max. / Vbatt	1–5 kHz, PWM vol	Open collector sink switch output for Buzzer. Fre- quency controlled pitch, PWM for volume.			
	VIBRA	UEM	Vibra	Out	Dig	135mA max / Vbatt	64/128/ 256/512 Hz	Open collector sink switch/ Frequency/ pwm output for buzzer			
	DLIGHT	UEM	UI	Out	Dig	100mA / Vbatt	Switch/ 100Hz pwm	Open drain switch/pwm output for display light			
	KLIGHT	UEM	UI	Out	Dig	100mA / Vbatt	Switch/ 100Hz pwm	Open drain switch/pwm output for key light			
ACCI	DIF lines, no bu	s *	Wired D	igital A	Accesso	ry Interface, onl	y to test pat	tern			
	MBUS	UEM	Test Pad 7	In/ Out	Dig	0/2.7 V	9k6bit/s	Mbus bidirectional asyn- chronous serial data bus/ FDL clock, 0-8MHz depends on project			

RIP	Signal name	Connec from -		UEM	I/O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes				
	FBUSTXO	UEM	Test Pad 2	Out	Dig	0/2.7 V	9k6- 115kbit/s	Fbus asynchronous serial data output / FDL data out <1Mbit/s				
	FBUSRXO	Test Pad 3	UEM	In	Dig	0/2.7 V	9k6- 115kbit/s	Fbus asynchronous serial data input/FDL in, 0-8Mbit/s depends on project				
RTCB	ATT lines, no bu	s *	Connect	Connector pads for Real Time Clock back up battery								
	VBACK	UEM RTC- BATT		In/ Vsu Out pply		+2-3.3V		For back up battery Li 6.8x1.4				
	GND	Global G	3ND	/ Chr g		0		2.3mAh@3.3V				
VBB,	Globals instead	Regulat	ed BB S	Supply \	/oltages	1						
	VANA	UEM		Out	Vre g	2.78V +-3%	80mA max.	Disable in sleep mode				
	VFLASH1	UEM		Out	Vre g	2.78V +-3%	70mA max	1.5mA max. in sleep mode. VFLASH1 is always enabled after power on.				
	VFLASH2	UEM		Out	Vre g	2.78V +-3%	40mA max.	VFLASH2 is disabled by default				
	VIO	UEM		Out	Vre g	1.8V +-4.5%	150mA max.	1.5mA max. in sleep mode. VIO is always enabled after power on.				
	VCORE	UEM		Out	Vre g	1.0-1.8V +-5%	200mA max.	200 uA max. in sleep mode				
	VBACK	UEM		In/ Out	Vre g	3.0 V		No external use, only for RTC battery charging/dis- charging.				

UPP Block signals

RFCONVDA(5:0)	See UEM / RFCONVDA(5:0)
RFCONVCTRL(2:0)	See UEM / RFCONVCONTR(2:0)
AUDUEMCTRL(3:0)	See UEM / AUDUEMCTRL(3:0)
AUDIODATA(1:0)	See UEM / AUDIODATA(1:0)
ISIMIF(2:0)	See UEM / ISIMIF(2:0)
PUSL(2:0)	See UEM / PUSL(2:0)
IACCDIF(5:0)	See UEM / IACCDIF(5:0)

RFCLK & GND	See BB_RF IF Conn / RFCLK (not BUS)
RFICCNTRL(2:0)	See BB_RF IF Conn / RFICCNTRL(2:0)
GENIO(28:0)/rips 5 and 6	See BB_RF IF Conn / GENIO(28:0) also Sec 5.2.4

Rip #	Signal Name DAMPS/ GSM1900	Corinected from to			PP Signal Properties A/DLevelsFreg./ Timing resolution		lsFrea./	Description / Notes
UPP	UPP Globals, no bus, no rip					plies and GN	ID	
	VIO	UPP	UEM	In	Vreg	1.8 V +- 4.5 %	20mA max.	UPP I/O power supply
	VCORE	UPP	UEM	In	Vreg	1.0-1.8 V +- 5 %	100mA max.	UPP logics and processors power supply, settable to reach the speed for various clock frequencies.
	GND	UPP	VSSXXX			0		Global GND

MEMADDA(23:0)*	See Table 16. Memory Interface Signals / MEMADDA(23:0)*
MEMCONT(9:0)	See Table 16. Memory Interface Signals / MEMCONT(8:0)
GENIO(28:0)	See Table 16. Memory Interface Signals / GENIO(28:0)

RIP	Signal name		Connected from - to			Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes	
GENI	0(28:0)	General	General I/O Pins. Bolded lines are only valid for one product						
0	Switch con- trol for SGND Vdd	UPP		Out	Dig	0-1.8 V	In/Pull Up	Used to enable/disable power to DLR-3 cable	
1	Emu/Present	UPP		In	Dig	0-1.8 V	In/Pull Up	R&D only	
2	RTS	UPP		In	Dig	0-1.8 V	In / Pull Up	Used as request to send input from DLR-3 cable	

RIP	Signal name	Connected from – to		UPP I/O		Signal Prop A/D Levels- Timing reso	-Freq./	Description / Notes
3	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
4	LCDRstX	UPP	Dis- play	Out	Dig	0-1.8 V	Out / 0	Display reset
5	TXP1	UPP	RF	Out	Dig	0-1.8 V	Out / 0	Tx Power Enable (low Band)
6	TXP2	UPP	RF	Out	Dig	0-1.8 V	Out / 0	Tx Power Enable (High Band)
7	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
8	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
9	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
10	Smart Cover Driver	UPP	Smart cover driver	Out	Dig	0-1.8 V	In / Pull Down	Smart cover driver control
11	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Up	
12	Not Used	UPP		In/ Out	Dig	0-1.8 V	In / Pull Down	
13	Not Used	UPP	IR / RF	Out	Dig	0-1.8 V	In / Pull Up	Fast IR
14	SHUTDOWN	UPP	MIDI driver	In	Dig	0-1.8 V	In / Pull Down	MIDI driver shutdown
15	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
16	Not Used	UPP		In	Dig	0-1.8 V	In / Pull Up	
17	Not Used	UPP		In	Dig	0-1.8 V	In / Pull Up	
18	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
19	Not Used	UPP	LPRF/ RF	In/ Out	Dig	0-1.8 V	In / Pull Down	LPFR Data In / Accessory Buffer Enable / PAGain
20	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	Out / 0	LPRF Data Out
21	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	In / Pull Up	LPRF Sync / Accessory Mute
22	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	In / Pull Down	LPRF Interrupt/Accessory Power Up

RIP	Signal name	Connected from - to		UPP I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
23	FLSWRPX	UPP	FLASH	Out	Dig	0-1.8 V	Out / 1	Write Protect, O-active when protected
24	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Up	
25	Not Used	UPP		In/ Out	Dig	0-1.8 V	In / Pull Up	
26	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
27	Not Used	UPP		In/ Out	Dig	0-1.8 V	In / Pull Up	
28	Not Used	UPP		Out	Dig	0-1.8 V	Out / 1	

MEMORY Block Interfaces

RIP	Signal name	Connec from -		I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes				
MEM	ADDA(23:0)*		Externa	l Memo	ory Acce	ess / Data Bus						
0- 15	EXTADDA 0:15	Mem- ory	UPP	In/ Out	Dig	0/1.8V	25 / 150 ns	Burst Flash Address (0:15) & Data (0:15) Direct Mode Address (0:7)				
16 - 23	EXTAD 16:23	Mem- ory	UPP	In	Dig	0/1.8V	25 / 150 ns	Burst Flash Address (16:23) Direct mode Data (8:15)				
MEM	MEMCONT(9:0)			External Memory Control Bus								
0	ExtWrX	Memo ry_WE	UPP	In	Dig	0-1.8V		Write Strobe				
1	ExtRdX	Memo ry_OE	UPP	In				Read Strobe				
2												
3	(FIsBAAX) VPPCTRL	Mem- ory (VPP)	UPP	In				VPP = 1.8V, => VIO used internally for VPP VPP = 5/12V, VPP used				
4	FIsPS	Mem- ory PS	UPP	In/ Out			25 ns	Burst Mode Flash Data Invert Direct Mode Address (17)				
5	FIsAVDX	Memo ry_AV D	UPP	In				Flash Addr Data Valid/ Latch Burst Addr Direct Mode Address (18)				
6	FlsCLK	Mem- nory CLK	UPP	In			50 MHz	Burst Mode Flash Clock Direct Mode Address (19)				
7	FlsCSX	Memo ry_CE	UPP	In	•			Flash Chip Select				
8	FIsRDY	Mem- ory RDY	UPP	Out				Ready Signal for Flash				
9	FIsRSTX	Memo ry_RP	UPP	Out				Flash reset, 0 active (FLSRPX)				
GENI	0(28:0)		General	I/O Pir	used f	or extra control						
23	FLSWRPX	Memo ry_W P	UPP	Out	Dig	0/1.8V	0	Write Protect, O-active pro- tected.				
Globa	als		Power s	upplies	and pr	oduction test pa	d					

RIP	Signal name	Connec from –		1/0		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
	VIO	UEM	FLASH	In	PW R	1.8V		FLASH power supply
	VPP	Prod TP 6	FLASH	In	Vpp	0/(1.8) /5/12V		FLASH programming/erasing voltage control. 5 or 12 external voltage for high speed programming
	GND							Global GND

Rip #	Signal Name DAMPS/ GSM1900	Conne from		V	0	Signal Properties A/DLeve∥sFreq./ Timing resolution		Description / Notes
MEM	ADDA(23:0)		Exte	rnal N	lemory Addr/	Data Bus	
0- 15	EXTADD A 0:15	Memory	UPP	In/Ou	Dig	0/1.8 V	25 / 150 ns	Burst Flash Address (0:15) & Data (0:15) Direct Mode Address (0:7)
16- 23	EXTAD 16:23	Memory	UPP	In	Dig	0/1.8 V	25 / 150 ns	Burst Flash Address (16:23) Direct Mode Data (8:15)
MEM	ICONT(8:0)			Exte	rnal N	lemory Contr	ol Bus	
0	ExtWrX	Memory _WE	UPP	In	Dig	0/1.8 V		Write Strobe
1	ExtRdX	Memory _OE	UPP	In				Read Strobe
2								
3	(FIsBAAX) VPPCTRL	Memory (VPP)	UPP	In				VPP=1.8V ,=> VIO used internally for VPP VPP=5/12V, VPP used
4	FIsPS	Memory PS	UPP	In/ Out			25 ns	Burst Mode Flash Data Invert Direct Mode Address (17)
5	FIsAVDX	Memory _AVD	UPP	In				Flash Addr Data Valid/ Latch Burst Addr Direct Mode Address (18)
6	FIsCLK	Memory CLK	UPP	In			50 MHz	Burst Mode Flash Clock Direct Mode Address (19)
7	FlsCSX	Memory _CE	UPP	In				Flash Chip Select
8	FIsRDY	Memory RDY	UPP	Out				Ready Signal for Flash
9	FIsRSTX	Memory _RP	UPP	Out				Flash reset, 0 active, (FLSRPX)
GEN	IO(28:0)			Gene	eral I/	O Pin used fo	r extra contro	pl
23	FLSWRPX	Memory _WP	UPP	Out	Dig	0/1.8 V	0	Write Protect, 0-active protected
Globals			Pow	er sup	plies and pro	duction test	pad	
	VIO	UEM	FLASH	In	PWR	1.8 V		FLASH power supply
	VPP	Prod TP 6	FLASH	In	Vpp	0/(1.8) /5/12V		FLASH Programming/erasing voltage/control. 5 or 12 V external voltage for high speed programming
	GND							Global GND

Audio Interfaces

RIP	Signal name	Connected from – to		AUDIO I/O	Signal Properties A/D Levels-Freq./ Timing resolution	Description / Notes
HP IN	NTERNAL AUDIO					
AUDIO(4:0)			HP Inter	rnal microphor	ne and earpiece IF between l	JEM and Mic/Ear circuity

RIP	Signal name	Connec from -			Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes			
0	EARP	UEM	Ear-	Out	Ana	1.25V	Audio	Differential signal to HP		
1	EARN		piece					internal Earpiece. Load resistance 32 ohm.		
2	MIC1N	Mic	UEM	In	Ana	100mVpp	Audio,	Differential signal from HP		
3	MIC1P					max diff.	AC cou- pled to UEM	internal MIC		
4	MICB1	Mic	UEM	Out	V bias	2.1V typ./ <600 uA		Bias voltage for internal MIC		
Syste	m Connector		HP Internal microphone IF between System Connector and Mic/ear circuitr							
	MIC+	Mic	Audio - UEM	In Out	Ana Bias	2mV nom 2V2kohm	Audio DC bias	Mic bias and audio signal. Microphone mounted into system connector		
	MIC			In	GN D	0 (GND)		Connected to GND at UEM		
Earpi	ece Connector I	Pads	HP Inter	HP Internal IF between Earpiece and Mic/Ear circuitry						
	"1"-EARP	EAR	Audio - UEM- EAR P/N	Out	Ana	1.25V	Diff DC coupled Audio	Differential audio signal to earpiece 32 ohm		

RIP	Signal name	Connected from - to		audio I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes		
EXTE	EXTERNAL AUDIO INTERFACE									
XAUI	010(9:0)*		Externa	l Audio	IF betv	veen UEM and X	-audio circu	itry		
0	HEADINT	SysCo n/ HSet	UEM	Out	Dig	0/2.7V		Output to UEM for Headset Connector "HeadInt" Switch		
1	HF	UEM	SysCo n/	In	Ana	1.0Vpp bias 0.8V	Audio	ExternalEarpiece Audio Sig- nal		
2	HFCM		HSet		Ana	0.8 Vdc		Reference for DC coupled external Earpiece		
3	MICB2	UEM	SysCo n/ HSet	Out	V bias	2.1V tvp/ 600 uA		Bias voltage for external MIC		

RIP	Signal name	Connec from -				Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes		
4	MIC2P MIC2N	SysCo n/ Head- Set	UEM	Out	Ana	200mVpp max diff	Audio	Differential signal from external MIC		
6	HOOKINT	Sys Con	UEM	Out	Ana /Dig	02.7 V	DC	HS Button interrupt, Exter- nal Audio Accessory Detect (EAD)		
7								Not used		
8								Not used		
9								Not used		
Syste	em Connector		HP Inter	HP Internal microphone IF between system connector and Mic/Ear circuitry						
	XMICP	HS/HF Mic	Audio - UEM	In Out	Ana Bias	100mV nom diff 2.1V bias 1kohm	Audio DC bias	Differential symmetric input. Accessory detection by bias loading (EAD channel of		
	XMICN			In	Ana	100mV nom diff ; 2.1V bias 1k ohm	Audio	slow ADC of UEM) Hook interrupt by heavy bias loading		
	XEARP	HS/HF	Audio	In	Ana	100 mV nom	Audio	Quasi differential DC-cou-		
	XEARN	EAR/ Amp.	- UEM			diff		pled earpiece/HF amplifier signal to accessory. DC biased to 0.8V; XEARN a quiet reference although have signal when loaded due to internal series resis- tor.		

RIP	Signal name	Connected from - to		Display I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes	
LCDUI(2:0)			Display	Display & UI Serial Interface					
0	LCDCAMCLK	UPP	Displ	In	Dig	0/1.8V	1 MHz	Clock to LCD	
1	LCD- CAMTXD	UPP	Displ	In/ Out	Dig	0/1.8V	1 MHz	Data to/from LCD	
2	LCDCSX	UPP	Displ	In	Dig	0/1.8V		LCD Chip Select	
GENIO(28:0) Gene		General	ral I/O Pins						
4	LCDRstX	UPP	Displ	Out	Dig	0/1.8V	Out / O	Display Reset, 0-active	

NOKIA CCS Technical Documentation

Baseband External Connections

RIP	Signal name	Connec from -		Sys Conn		Signal Pro A/D Level Timing re	ls–Freq./	Description / Notes		
Syste	m Connector		HP Inter	HP Internal microphone IF between System Connector and Mic/Ear circ						
	XMICP	HS/HF Mic	Audio - UEM	In Out	Ana Bias	100mV nom diff 2.1V bias, 1K ohm	Audio DC bias	Differential symmetric output. Accessory detection by bias loadind. Hook interrupt by heavy bias loading		
	XMICN			In	Ana	100mV nom diff ; 2.1V bias 1kohm	Audio			
	XEARP	HS/HF	Audio	In	Ana	100mV	Audio	Quasi differential DC-coupled		
	XEARN	EAR/ Amp.	-UEM			nom diff		earpiece/HF amplifier signal to accessory. DC biased to 0.8V; XEARN a quiet reference although have signal when loaded due to internal series resistor.		
	INT	Switc h	Audio - UEM	In	Dig	0/2.7V		HS interrupt from system con- nector switch when plug inserted		
CHAF	RGER INTERFAC	E			•					
CHAF	RGER lines, no b	us *								
	VCHARIN	Charg er	UEM	In	Vch r	< 16V <1.2A	DC	Vch from Charger Connector, max 20V		
	GND				GN D			GND from/to Charger connec- tor		
	CHRGCTRL	Input	Out- put			32Hz, 0/2.8V		PWM control line for 3-wire chargers		

RIP	Signal name	Connec from -	nnected om – to		Conn	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
	GND	Glo-	Batt -					Global GND
	VBAT	bally	Batt +		Vba tt	3.0-4.2V	DC	Battery Voltage

CCS Technical Documentation

RIP	Signal name	Connected from - to		Batt Conn I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
	BSI		UEM		Ana Ana	0-2.7V	Pull down res	Battery Size Indicator Resis- tor, 100 kohm pull up to 2.78V(VFLASH)
	BTEMP		UEM					Btemp NTC Resistor, 100 kohm pull up to 2.78V(VANA)

Test Pattern for Production Tests

RIP	Signal name	Connec from –		UI I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
2	FBUSTX / FDLTX	Test Point	UEM	Out	Dig	0/2.7V		Fbus asynchronous serial data output / FDL
3	FBUSRX / FDLRX	Test Point	UEM	In	Dig	0/2.7V		Fbus asynchronous serial data input / FDL RxData
6	VPP	Test Point	Mem- ory	Out	Ana	0/5/12V		External Flash Program- ming Voltage for Flash Memory
7	MBUS / FDLCLK	Test Point	UEM	In/ Out	Dig	0/2.7V	9k6bit/s	Mbus bidirectional asyn- chronous serial data bus/ FDL Clock
8	GND	Test Point	BB					Ground

General Information About Testing

Phone operating modes

Phone has three different modes for testing/repair. Modes may be selected with suitable resistors connected to BSI- and BTEMP- lines as follows:

Mode	BSI- resistor	BTEMP- resistor	Remarks
Normal	68 k	75K	
Local	560_ (<1k_)	whatever	
Test	> 1 k	560_(<1k_)	Recommended with baseband testing. Same as local mode, but it is possible to make a phone call.

The MCU software enters automatically to local or test mode at start-up if correspond ing resistors are connected.

Note! Baseband doesn't wake up automatically when the battery voltage is connected (normal mode). Power can be switched on by

- Pressing the power key
- Connecting a charger
- RC-alarm function

In the local and test mode, the baseband can be controlled through MBUS or FBUS (FBUS is recommended) connections by Phoenix service software.

RF Module

Requirements

The RH-21 RF module supports the following system:

TDMA800

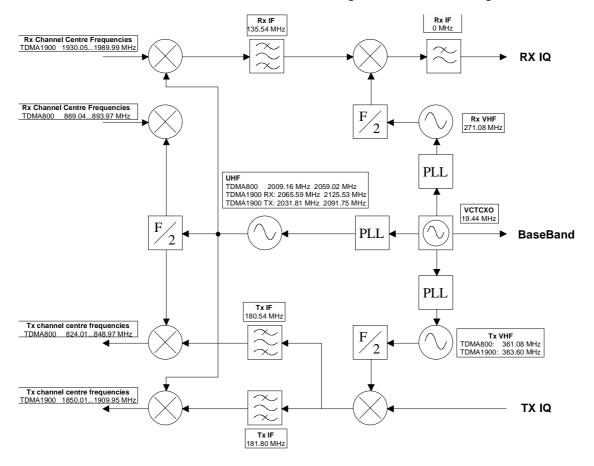
Hence, the minimum transceiver performance requirements are described in TIA/EIA-136-270. The RH-21 RF must follow the requirements in revision A. EMC requirements are set by FCC 47CFR 15.107 (conducted emissions), 15.109 (radiated emissions, idle mode), and 22.917 (radiated emissions, call mode) [1].

Temperature Conditions

Temperature range:

ambient temperature: -30...+ 60 °C

PWB temperature: -30...+85 °C

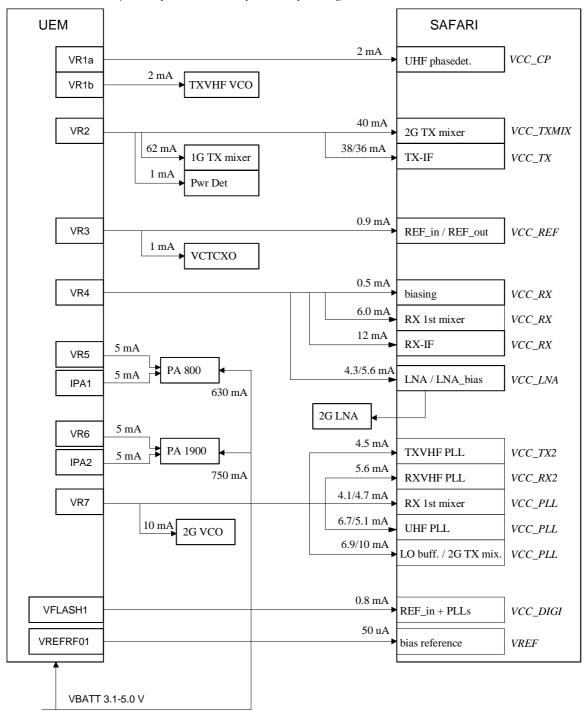

storage temperature range: -40 to + 85 °C

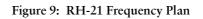
All of the EIA/TIA-136-270A requirements are not exactly specified over temperature range. For example, RX sensitivity requirement is 3 dB lower over -30..+60 °C range.

Main Technical Characteristics

RF Frequency Plan

The RH-21 frequency plan is shown in the following figure. A 19.44 MHz VCTCXO is used for UHF and VHF PLLs and as a baseband clock signal. All RF locals are generated in PLLs.


Figure 8: RF Frequency Block Plan


The RX intermediate frequency is the same on both operating bands. Due to the AMPS mode simultaneous reception and transmission, TX and RX IF frequencies are exactly 45 MHz apart from each other. RXIF is 135.54 MHz and TXIF 180.54MHz. The RXIF frequency is set so that it is not a multiple of either of the VHF's comparison frequency (120 k). The digital-only operation on highband allows a free selection of the TX IF frequency, since separate TXIF filters are implemented. Hence, the highband TX IF frequency is freely fixed to 181.8MHz due to the best possible spurious signal filtering. Therefore, the UHF frequency needs to be changed according to TX and RX slots in TDMA1900 operation.

DC Characteristics

Power Distribution Diagram

Note: The current values in the figure below are not absolute values and cannot be measured. These values represent maximum/typical currents drawn by the corresponding RF or SAFARI blocks in use, and are, therefore, dependent on the phone's operating mode and state.

Regulators

The regulator circuit is the UEM and the specifications can be found in the table below:

Regulator name	Output voltage (V)	Regulator Max. current (mA)	RF total 1GHz	RF total 2GHz
VR1 a/b	4.75 ± 3%	10	4	4
VR2	2.78 ± 3%	100	100	76
VR3	2.78 ± 3%	20	2	2
VR4	2.78 ± 3%	50	23	24
VR5	2.78 ± 3%	50	5	5
VR6	2.78 ± 3%	50	5	5
VR7	2.78 ± 3%	45	40	45
IPA1, IPA2	2.7 max.	$\begin{array}{l} 1 \pm 10\% \\ 3 \pm 4\% \\ 3.5 \pm 4\% \\ 5 \pm 3\% \end{array}$	1.3 – 5.0	1.3 – 3.7
VREFRF01	1.35 ± 0.5%	0.12	0.05	0.05
VFLASH1	2.78 ± 3%	70	1	1

Receiver

The receiver shows a superheterodyne structure with zero 2nd IF. Lowband and highband receivers have separate frontends from the diplexer to the first IF. Most of the receiver functions are integrated in the RF ASIC. The only functions out of the chip are highband LNA, duplexers, and SAW filters. In spite of a slightly different component selection, the receiver characteristics are very similar on both bands.

An active 1st downconverter sets naturally high gain requirements for preceding stages. Hence, losses in very selective frontend filters are minimized down to the limits set by filter technologies used and component sizes. LNA gain is set up to 16dB, which is close to the maximum available stable gain from a single stage amplifier. LNAs are not exactly noise matched in order to keep passband gain ripple in minimum. Filters have relative tight stopband requirements, which are not all set by the system requirements but the interference free operation in the field. In this receiver structure, linearity lies heavily on mixer design. The 2nd order distortion requirements of the mixer are set by the 'half IF' suppression. A fully balanced mixer topology is required. Additionally, the receiver 3rd order IIP tends to depend on active mixer IIP3 linearity due to pretty high LNA gain.

The IF stages include a narrowband SAW filter on the 1st IF and a integrated lowpass filtering on zero IF. The SAW filter guarantees 14dBc attenuation at alternating channels, which gives acceptable receiver IMD performance with only moderate VHF local phase noise performance. The local signal's partition to receiver selectivity and IMD depends then mainly on the spectral purity of the 1st local. Zero 2nd IF stages include most of the receivers signal gain, AGC control range, and channel filtering.

AMPS/TDMA 800 MHz Front End

Parameter	MIN	ТҮР	MAX	Unit/Notes
Diplexer input loss	0.35	0.4	0.45	dB
Duplexer input loss	2.5	3	4.1	dB
LNA gain: High gain mode Low gain mode	16 -4.5	16.5 -4	17.3 -3.8	dB dB
LNA noise figure*	1.4	1.7	2.3	dB
LNA 3rd order intercept (IIP3)*	-4	-3	-1.5	dBm
Bandfilter input loss	1.5	2	2.5	dB
Mixer gain*	6	7.5	8	dB
Mixer NF*	8	9	10.5	dB
Mixer IIP3*	4	4.5	5	dBm
Total:	· · · · ·	ŀ	·	·
Gain	18.2	18.6	20	dB
Noise Figure	4.6	5.5	7	dB
3rd order intercept (IIP3)	-8.9	-7.5	-6.8	dBm
*see Safari spec/measurements				

TDMA 1900 MHz Front End

The TDMA 1900 LNA is a discrete circuit. It uses an integrated Bias control block, which is inside the SAFARI. In normal high-gain operation mode, the bias voltage 2.78 V is connected on collector and sink type constant current source is connected on emitter. Bias current source is adjustable from 0.5 mA to 7.5 mA with 0.5 mA step. Base is biased from 2.78 V voltage via resistor.

When the LNA AGC step is enabled, LNA is in low gain operation mode. Voltage and current bias sources and direction of current are switched on the contrary. In this operation mode, the LNA has good linearity, a low noise figure, and about -3 dB gain.

During the TX-slot, LNA is in power-down mode. This is executed by switching the bias current source to 0 mA.

Parameter	MIN	ТҮР	MAX	Unit/Notes
Diplexer input loss	0.45	0.5	0.55	dB
Duplexer input loss	1.3	2.5	3.0	dB
LNA gain: High gain mode Low gain mode	14 -3.5	15 -3.0	15.5 -2.0	dB dB
LNA noise figure*	1.0	1.2	1.5	dB

Parameter	MIN	ТҮР	MAX	Unit/Notes
LNA 3rd order intercept (IIP3)*	-3	-2	-1	dBm
Bandfilter input loss		3.6	4.5	dB
Mixer gain*	6.5	7.5	8.5	dB
Mixer NF*	9	10	11	dB
Mixer IIP3*	4	4.5	5	dBm
Total:				
Gain	16.0	17.0	18.0	dB
Noise Figure	5.0	5.5	6.5	dB
3rd order intercept (IIP3)	4	5	6	dB
*see Safari spec/measurements		-70	-68	dBc

Parameter	Minimum	Typical/ Nominal	Maximum	Unit/Notes
Total				
Power up time			0.1	ms
Noise figure, total			9.5	dB
3rd order input intercept point		-25		dBm
Max voltage gain, Mixer + 2nd IF (IF+2nd AGC max)	78.5			dB
Min voltage gain, Mixer + 2nd IF (IF+2nd AGC min.)			6	dB
Gain charge, Mixer+2nd IF		1.4	0.9	dB, temp -30+85 C
IQ mixers + AMP2				
RF input impedance differential		1.2		kohm/pF
RF input frequency range		135.54		MHz
Conversion gain @ RI=1kohm	23.5	24	24.5	dB
IF AGC gain range (5x6 dB)	30			dB
IF AGC gain step (5 steps)		6		dB
IF AGC gain error relative to max gain	-0.5		+0.5	dB
AMP2 gain		18		dB
-3dB frequency	21	25	29	kHz

CCS Technical Documentation

Parameter	Minimum	Typical/ Nominal	Maximum	Unit/Notes
LPF: 4th order Chebysev				
LPF gain		0		dB
Corner frequency tuning range	14		17	kHz
Corner frequency tuning step			1	kHz
Attentuation @ 30 kHz *	24			dB
Attentuation @ 60 kHz *	55			dB
Attentuation @ 120 kHz *	80			dB
Attentuation @ 240 kHz *	60			dB
Attentuation @ >480 kHz *	40			dB
AGC				
AGC gain range	-6		36**	dB
AGC gain range step 7 steps		6		dB
AGC gain error relative to max gain	-0.5		+0.5	dB
Max IF/2nd IF buffer output level			3	V pp (differential)

Frequency Synthesizers

RH-21 contains three synthesizers — one UHF synthesizer and two VHF synthesizers. The UHF synthesizer is based on an integrated PLL and external UHF VCO, loop filter, and VCTCXO. Its main goal is to achieve the channel selection for dual band operations associated with dual mode. Due to the RX and TX architecture, this UHF synthesizer is used for down conversion of the received signal and for final up conversion in transmitter. A common 2GHz UHFVCO module is used for operation on both low and highband. A frequency divider is integrated in the Safari.

Two VHF synthesizers consist of: RX VHF Synthesizer includes integrated PLL and VCO and external loop filter and resonator. The output of RX-VHF PLL is used as LO signal for the second mixer in receiver. TX VHF Synthesizer includes integrated PLL and external amplifier, loop filter, and resonator. The output of TX-VHF PLL is used as a LO signal for the IQ-modulator of the transmitter.

Transmitter

The transmitter RF architecture is an up-conversion type (desired RF spectrum is low side injection) with (RF-) modulation and gain control at IF. The IF frequency is band related— 180.54 MHz in the cellular band and 181.80MHz in the PCS band. The cellular band is from 824.01-848.97 MHz and the PCS band is from 1850.01-1909.95 MHz.

Common IF

The RF-modulator is integrated with a PGA (Programmable Gain Amplifier) and IF output

buffer inside the SAFARI_T RFIC-chip (I- and Q-signals that are output signals from BBside SW IQ-modulator have some filtering inside Safari before RF-modulation is performed). The required LO-signal from the TXVCO is buffered with phase shifting in Safari. After modulation ($\pi/4$ DQPSK or FM), the modulated IF signal is amplified in the PGA.

Cellular Band

When operating in cellular band, the IF signal is buffered at IF output stage that is enabled by TXP1 TX control. The maximum linear (balanced) IF signal level to 50Ω load is about -8 dBm.

For proper AMPS-mode receiver (duplex) sensitivity, IF signal is filtered in strip-filter before up-conversion. The upconverter mixer is actually a mixer with LO and output driver being able to deliver about +6 dBm linear output power. Note that in this point, term linear means -33 dB ACP. The required LO power is about -6 dBm. The LO signal is fed from Safari.

Prior to the power amplifier, the RF signal is filtered in a band-pass filter. The typical insertion loss is about -2.7 dB, and maximum less than -3.5 dB. The input and output return losses are approximately -10 dB.

The power amplifier is $50\Omega/50\Omega$ module. It does not have its own enable/disable control signal, but it can be enabled by bias voltage and reference bias current signals. The gain window is +27 to +31 dB and the linear output power is +30dBm (typical condition) with -28 dB ACP. The nominal efficiency is 50 percent.

PCS Band

During operation in the PCS band, the IF signal is routed from the Safari to be filtered in the TX IF SAW filter. The signal is returned to the Safari, and then routed to the up-converter mixer. The LO-signal to the mixer is buffered and balanced inside the Safari. The mixer output is enabled by the TXP2 TX control signal. The maximum linear (balanced) RF signal level to a 50Ω load is about +7 dBm.

After the Safari, the balanced RF-signal is single-ended in 1:1 balun and then filtered in SAW filter. The typical insertion loss is about -4.0 dB, and maximum less than -5.7 dB. This filter has a relatively high pass band ripple of about 1.0-1.5 dB, the largest insertion being at the high end of the band. The input and return losses are about -10 dB.

Power amplifier is $50\Omega/50\Omega$ module. It does not have its own enable/disable control signal, but it can be enabled by bias voltage and reference bias current signals. The gain window is +31 to +36 dB and linear output power is +30 dBm (typical condition) with -28 dB ACP. The nominal efficiency is 40 percent.

Power Control

For power monitoring, there is a power detector module (PDM) built from a (dual)coupler, a biased diode detector, and an NTC resistor. RF signals from both bands are routed via this PDM. The RF isolation between couplers is sufficient not to lose filtering performance given by duplex filters. The diode output voltage and NTC voltage are routed to BB A/D converters for power control purposes. The TX AGC SW takes samples from diode output voltage and compares those values to target value, and adjusts BB I-and Q-signal amplitude and/or Safari PGA settings to keep power control in balance.

NTC voltage is used for diode temperature compensation and for thermal shutdown when radio board's temperature exceeds $+85^{\circ}$ C.

False TX indication is based on detected power measurement when carrier is not on.

The insertion loss of coupler is -0.42 dB (max) at cellular band and -0.48 dB (max) at PCS band. Typical values for insertion losses are about -0.2 dB. The filtering performance of diplexer is taken into account in system calculations.

Power Level	TDMA Target	AMPS Target
PL2	27.2	24.4
PL3	23.3	21.1
PL4	19.3	17.8
PL5	15.3	14.5
PL6	11.3	10.5
PL7	7.3	6.5
PL8	3.2	3.2
PL9	-0.9	-0.9
PL10	-5.3	-5.3

Signal levels

(For RH-21 AMPS mode PL2 24.4 dBm. For digital PL2 = 27.3 dBm both SB and DB, LB and HB.)

Antenna Circuit

The antenna circuit consists of duplex filters, diplexer, and a DCT4 RF connector/switch (X900). The maximum insertion loss is 0.3 dB.

Antenna

The RH-21 cellular antenna is an internal, dual-resonance planar, inverted F antenna (PIFA), mounted on a common dielectric substrate.